
JWT for auth and more



Old good stateful approach



Cookie: user_id=123

Cook
ie: 

user
_id=

123



first visit
1. Generate random unique session ID 
asdf1234

1. Find user and verify password
2. Write user ID into session bucket 

associated with current user session ID
3. Redirect to user home page

POST /login  
Cookie: sid=asdf1234  

username=alex 
password=secret

Set-Cookie: sid=asdf1234

GET /tasks  
Cookie: sid=asdf1234 1. Read user ID from session storage by 

session ID asdf1234
2. Load tasks from DB by user ID
3. Send tasks data backHTML of Alex's tasks



So what is a problem?













jwt.io

http://jwt.io


JWT Registered Claims (payload properties)

● iss (issuer): Issuer of the JWT
● sub (subject): Subject of the JWT (the user)
● aud (audience): Recipient for which the JWT is intended
● exp (expiration time): Time after which the JWT expires
● iat (issued at time): Time at which the JWT was issued; can be 

used to determine age of the JWT
● jti (JWT ID): Unique identifier; can be used to prevent the JWT 

from being replayed (allows a token to be used only once)



Public Claims 

● name: Full name
● nickname: Casual name
● profile: Profile page URL
● picture: Profile picture URL
● website: Web page or blog URL
● email: Preferred e-mail address
● scope: Scope Values

https://www.iana.org/assignments/jwt/jwt.xhtml

https://www.iana.org/assignments/jwt/jwt.xhtml


● "is_admin": true, 
● "roles": "hr,manager"

Private Claims



JWT usage flow



POST /login  
username=alex 
password=secret

1. Find user and verify password
2. Compose token payload
○ user id (sub)
○ expiration time (exp)
○ issued at (iat)
○ issuer (iss)

3. Sign token with secret key

Set-Cookie: token=xxx.yyy.zzz

{ "token": "xxx.yyy.zzz" }

GET /tasks 
Cookie: token=xxx.yyy.zzz
Authorization: Bearer xxx.yyy.zzz

1. Check that the JWT is well formed
2. Check the signature
3. Check the standard claims (exp, iss)
4. Provide data for current user (sub)[ {"name": "Try to use JWT"} ]



JWT Tips and Tricks



Session expiration and sliding window

1. Chose desired max inactive duration
2. Add it to current time and set as token exp
3. For every request (or periodically) issue new token with 

updated expiration time



● Authorization server holds user accounts and issue 
access tokens

● Different services provide data if user has access 
token from trusted authorization server

● Microservices is a special case  

Single sign-on (SSO)



● Create auth0.com account
● Add up to 2 providers for free
● Validate tokens issues by Auth0 with their lib

Social Login

http://auth0.com


Public and private claims
{ 
  "sub": "alexko", 
  "email": "alexko@in6k.com", 
  "nickname": "СашКо", 
  "name": "Alexander Kotov", 
  "is_admin": true, 
  "scope": "meetup incamp", 
  "timezone": "Europe/Kiev" 
}



1. Create a token with email, limited scope and desired 
expiration time

2. Send URL with token to user email address 
/confirm?jwt=xxxxx.yyyyy.zzz

3. When server receive a token
1. Parse and validate token
2. Mark email from token as confirmed

Confirmation of email address



● Authorization server creates token that
○ limited in scope and audiance
○ short-lived (about 2 minutes)

● Token passed to sateless file server in URL
○ /documents/42/file?jwt=xxxxx.yyyyy.zzz  

One time access – file download



But what can go wrong?



1. Hold issuing time in token (iat)
2. Give a user the "Logout me from everywhere" button
3. Store a time, when this button was clicked last time 
4. Treat all tokens issued before this time as invalid 

"Logout" from all devices



● Secret key must be strongly protected
● Not suitable for stateful services as gets to big in size
● Requires white- or black-list to reject access with 

compromised (stolen) token
● Requires shared state for "log me out from all devices"

JWT limitations



● Instead of longterm JWT use short-lived tokens and renew 
them when expiration time approaches

● You must be serious about allowed alg, iss and aud 
● For web app store token in http only, secure cookie
○ limited by /api path, if applicable

● For better security consider using a pair of refresh/access 
tokens

JWT usage tips



blog.interlink-ua.com
friends@interlink-ua.com
facebook.com/interlinkua

Do you want some code?


